引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1847次   下载 1324 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种基于改进BP神经网络的办公座椅舒适性评估方法
钟奇1, 郭钢2, 裴学胜1, 许娜2
1.河南科技大学,洛阳 471023;2.重庆大学,重庆 400044
摘要:
目的 提出一种基于改进BP神经网络(PCA-BP)的办公座椅舒适性评估方法。方法 对4款不同造型、材质的办公座椅进行臀部及背部Tekscan压力测试,并通过五级Likert量表记录被试的心理舒适值。在多重相关性检验的基础上,利用PCA-BP算法建立办公座椅舒适性的预测模型,并对模型的有效性进行验证。结论 模型拟合的均方误差为0.164,预测值和心理值配对样本t检验显著相关,相关系数为0.918。与普通BP算法比较,基于PCA-BP算法的办公座椅舒适性预测效果更佳,为办公座椅舒适性评估提供了更好的评估方法。
关键词:  用户体验  舒适性  办公座椅  Tekscan  PCA-BP
DOI:10.19554/j.cnki.1001-3563.2018.04.030
分类号:TB472
基金项目:国家自然科学基金资助项目(51375510)
Evaluation Method of Office Seat Comfort Based on Improved BP Neural Network
ZHONG Qi1, GUO Gang2, PEI Xue-sheng1, XU Na2
1.Henan University of Science and Technology, Luoyang 471023, China;2.Chongqing University, Chongqing 400044, China
Abstract:
A evaluation method of office seating comfort is put forward based on improved BP neural network (PCA-BP). 4 office chairs with different appearance and material for hip and back Tekscan stress are tested, and the value of psychological comfort through the five-level Likert scale is recorded. On the basis of the multiple correlation test, PCA and BP algorithm is used to establish the prediction model of office seating comfort, and the validity of the model are verified. The mean square error(MSE) is 0.164. Predictive and psychological value is significantly associated with paired samples T test and the correlation coefficient of 0.918. Compared with ordinary BP algorithm, prediction effect of the office seat comfort is better based on PCA-BP algorithm, which provides a better evaluation method for the office seat comfort.
Key words:  user experience  comfort  office chair  Tekscan  PCA-BP

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26488525位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号