引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 691次   下载 0 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于机器学习的平面公益广告效果评价研究
熊强,郑建华
仲恺农业工程学院,广州 510225
摘要:
目的 从数据科学基础理论出发,通过探索基于机器学习的平面公益广告效果评价模型,实现对平面公益广告设计的效果评价。方法 对平面公益广告图像数据集进行切分(7∶3),并对广告图像特征进行多维度提取,随后采用随机森林叠加多层感知机和XGBoost算法构建集成分类模型,并经训练得到广告效果强弱分类评价模型。结果 测试结果显示,在训练集的F1值为1.0时,该模型在测试集的F1值可达0.897 6,能对广告效果做出正确评价。结论 基于机器学习的多特征融合、多模型集成模型能够实现对平面公益广告效果的准确评价,为平面公益广告效果评价提供一种新方法。
关键词:  多特征  多模型  平面公益广告  效果评价研究
DOI:10.19554/j.cnki.1001-3563.2023.20.048
分类号:TB482
基金项目:广东省教育厅研究生教改项目(2021JGXM068);广东省教育科学规划项目(2021GXJK203;2022GXJK216);2021年广东省高等职业教育教学质量与教学改革工程项目(GDJG2021494)
Effect Evaluation of Plane Public Service Advertisement Based on Machine Learning
XIONG Qiang, ZHENG Jian-hua
(Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)
Abstract:
The work aims to explore the machine learning-based effect evaluation model of print public service advertisement based on the basic theory of data science, and realize the design effect evaluation of print public service advertisement. Firstly, the image data set of print public service advertisement was segmented according to the ratio of 7∶3, and the characteristics of advertisement images were extracted from multiple dimensions. Then, the classification model was constructed by integrating random forest with Multi-layer Perceptron Model and XGBoost algorithm, and the classification evaluation model of the strong and week advertising effect was obtained through training. The test results showed that the F1 value in the training set was 1.0, and the F1 value in the test set was about 0.897 6, which could correctly evaluate the advertising effect. The multi-feature fusion and multi-model integration model based on machine learning can realize the accurate evaluation of print public service advertisements, and provide a new method for the evaluation of print public service advertisements effect.
Key words:  multi-feature  multi-model  print public service advertisement  effect evaluation research

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26487439位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号