引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4005次   下载 1930 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于烟花混合蚁群的移动机器人路径规划研究
周森鹏, 穆平安, 张仁杰
上海理工大学 光电信息与计算机工程学院,上海 200093
摘要:
目的 以应用于包装车间的移动机器人的路径规划作为研究对象,解决蚁群算法收敛速度慢、寻找到的路径不优等缺陷。方法 引入改进烟花和蚁群融合的方法进行搜索,首先建立移动机器人的栅格地图,其次采用改进烟花算法进行路径粗搜索,将得到的路径作为信息素增量,再运用蚁群细搜索求解。结果 文中方法与传统方法相比,收敛速度得到提高,并寻找到了更优的路径。结论 通过采用融合算法,弥补了烟花寻优的不足,加快了蚁群的收敛,可以对2种算法互相取长补短。
关键词:  路径规划  最优路径  烟花算法  实验仿真
DOI:10.19554/j.cnki.1001-3563.2019.11.026
分类号:TB486.3
基金项目:
Path Planning of Mobile Robot Based on Hybrid FWA and ACO
ZHOU Sen-peng, MU Ping-an, ZHANG Ren-jie
School of Optical-Electrical and Computer-Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:
The paper aims to solve the slow convergence speed and inferior path of ACO algorithm with the path planning of mobile robot applied in packaging workshop as the research object. The method of fusing IFWA and ACO was applied for searching. Firstly, the raster map of mobile robot was established. Secondly, the IFWA was used to search the path roughly to take the path obtained as the pheromone increment. Then the ACO subtle search was used for solution. Compared with the traditional method, the method adopted in this paper improved the convergence speed and found the optimal path. The proposed fusion method covers the shortage of FWA and accelerates the convergence of ACO. The two algorithms could be used for mutual complementation.
Key words:  path planning  optimal path  FWA algorithm  simulation results

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26797162位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

渝公网安备 50010702501716号