摘要: |
目的 为了探讨产品材质意象设计的有效方法,研究利用质感要素来构建材质意象评价体系。 方法 利用色彩理论、主成分分析法等方法,确定产品色彩、材料、表面处理工艺的质感要素、质感要素评价等级和质感要素评价系数。利用质感要素定量描述确定材质、质感要素、材质意象的数学表达式,并构建三者之间的关系模型。结果 以水杯为例,利用最小二乘法确定水杯材质意象评价模型。经验证,水杯材质意象评价模型的准确率为80%。结论 质感要素评价等级、质感要素评价系数为材质意象设计提供了参数化方法。产品材质意象关系模型较好地反映了材质、质感要素、材质意象之间的内在关系。利用提出的材质意象设计方法,可计算任意产品的材质意象值,为产品材质意象设计提供理论指导。 |
关键词: 质感要素 主成分分析 材质意象 最小二乘法 |
DOI:10.19554/j.cnki.1001-3563.2019.08.006 |
分类号:TB472 |
基金项目:宁夏高等学校科学技术研究项目(NGY2018-151);国家自然科学基金资助项目(51465037);北方民族大学中央高校基本科研业务费专项资金资助(2018XYZJD03);宁夏回族自治区高等学校科技创新平台“先进装备关键零部件及系统创新产学研合作基地” |
|
Product Material Image Design Based on Texture Elements |
ZHANG Qin-wei1,2, LIU Zhi-feng2, MU Chun-yang1, LYU Shuo1
|
1.North Minzu University, Yinchuan 750021, China;2.Hefei University of Technology, Hefei 230009, China
|
Abstract: |
To analyze the effective method of product material image design, the paper uses the texture element to construct the material image evaluation system. Texture element and texture element evaluation level of color, material and surface treatment process were determined by color theory and principal component analysis. The mathematical expressions of the material, the texture element, and the material image were determined by quantitative description of the texture elements, and the relationship model between the above three was constructed. Taking the cup as an example, the image estimation model of the cup material was determined by the least square method. It was verified that the accuracy of the cup image evaluation model was 80%. The texture element evaluation level and the texture element evaluation coefficient provide a parameterization method for the material image design. The relationship model of product material image better reflects the intrinsic relationship between materials, texture elements, and material images. The material image value of any product can be calculated using the proposed material image design method. It provides theoretical guidance for product material image design. |
Key words: texture element principal component analysis material image least squares method |