引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2866次   下载 1439 本文二维码信息
码上扫一扫!
分享到: 微信 更多
改进的RBF神经网络PID算法在电磁振机中的应用
李丹, 翟震
郑州大学 材料科学与工程学院,郑州 450001
摘要:
目的 为了减少实际工作生产环境对智能组合秤称量精度的影响,增加电磁振动系统对环境的抗干扰性能。方法 用RBF神经网络PID算法改进组合秤中的电磁振动系统,并在基础的RBF神经网络PID控制算法上引入动量因子的平方,减少拟合误差和参数调节过程中的震荡现象。结果 与基础的RBF神经网络PID控制算法相比,改进后算法的收敛速度更快,拟合精确度更好;当仿真长度增加时,依然可以很好地逼近目标函数。结论 改进后的算法使电磁振机的振幅和振动频率更加稳定,可以减少环境中噪音对其的干扰。
关键词:  电磁振动系统  RBF-PID  动量因子  自适应
DOI:10.19554/j.cnki.1001-3563.2019.07.029
分类号:TP273
基金项目:
Application of Improved RBF Neural Network PID Algorithm in Electromagnetic Vibrating Machine
LI Dan, ZHAI Zhen
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract:
The work aims to reduce the impact of the working production environment on the weighing accuracy of the intelligent combination scale and increase the anti-jamming performance of the electromagnetic vibration system to the environment. The RBF neural network PID control algorithm was used to improve the electromagnetic vibration system in the production process. And the square of the momentum factor was added to the basic RBF neural network PID control algorithm. The empirical accumulation of parameter changes was considered to reduce the parameter adjustment. Compared with the basic RBF neural network PID control algorithm, the improved algorithm had faster convergence speed and better fitting accuracy. When the simulation length increased, the target function could still be well approximated. The improved algorithm makes the amplitude and vibration frequency of the electromagnetic vibration machine more stable. It can reduce the interference of noise in the environment.
Key words:  electromagnetic vibration system  RBF-PID  momentum factor  self-adaptive

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26481534位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号