引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3105次   下载 2055 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于Faster R-CNN改进的数粒机系统
胡安翔, 李振华
山东大学控制科学与工程学院,济南 250061
摘要:
目的 解决目前数粒机只能计数不能同时分拣残损药粒的问题。方法 设计以Faster R-CNN深度神经网络为核心的药粒数粒机系统。在原有的数粒机基础之上,更换CCD线阵相机为面阵相机,以满足图像采集的需求,进一步使用图像分割和多线程技术加快图像处理速度。最终通过训练好的Faster R-CNN网络检测出目标并分拣。结果 经过测试集的验证,正常药粒识别率达到了95.47%,残损药粒识别率达到了97.94%,单幅图像处理达到了65 ms的实时速度。结论 该方法在传统的计数基础上很好地融合了先进的深度学习技术,实现了目标的自动分拣。
关键词:  数粒机  面阵相机  Faster R-CNN  药粒分拣
DOI:10.19554/j.cnki.1001-3563.2018.09.025
分类号:TB486;TP391
基金项目:
Improved Capsule Counting Machine Based on Faster R-CNN
HU An-xiang, LI Zhen-hua
School of Control Science and Engineering, Shandong University, Jinan 250061, China
Abstract:
The work aims to solve the problem that the current capsule counting machine can only count capsules and cannot sort damaged capsules at the same time. A capsule counting machine with the Faster R-CNN deep neural network as the core was designed. On the basis of the original capsule counting machine, the CCD line-array camera was replaced by area-array camera to meet the demand of image acquisition, and the image segmentation and multi-thread technology were further used to speed up the image processing speed. Finally, the target was detected and sorted through the well trained Faster R-CNN network. After verification of the test set, the identification rate of normal capsule reached 95.47%, the identification rate of damaged capsule reached 97.94%, and the single image processing reached the real-time speed of 65 ms. The proposed method properly combines the advanced in-depth learning technology based on the traditional counting and realizes the automatic sorting of the target.
Key words:  capsule counting machine  area-array camera  Faster R-CNN  capsule sorting

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26481920位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号

引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载  
分享到: 微信 更多
摘要:
关键词:  
DOI:
分类号:
基金项目:
Abstract:
Key words:  

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26482026位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号