引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2546次   下载 2066 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种改进的图像低维表示方法
曾步衢
黄淮学院,驻马店 463000
摘要:
目的 解决当前方法需要对图像中的相应点手动标记界标,且局限于特定对象或形状变形的问题。方法 提出一种可以同时实现图像颜色、外观和形态的图像低维表示算法。结果 该算法通过将形态和外观的流形约束到低维子空间上,进一步降低了流形学习的采样复杂性。结论 文中方法的性能远优于目前典型的稳健型光流算法和SIFT流算法。在图像编辑和关节学习关任务中取得了令人满意的定性结果。
关键词:  图像低维表示  L2范数  稳健型光流算法  SIFT流算法
DOI:
分类号:
基金项目:河南省教育厅重点科技攻关项目(13A520786)
An Improved Method of Low-Dimensional Representation of Images
ZENG Bu-qu
Huanghuai University, Zhumadian 463000, China
Abstract:
The work aims to solve the problem that the existing solutions either require manually specified landmarks for corresponding points in the images, or are restricted to specific objects or shape deformations. A low-dimensional representation of images for simultaneously recovering color, appearance and shape was proposed. The proposed algorithm further reduced sample complexity of manifold learning as the manifolds of shape and appearance were restricted to low-dimensional subspaces. The proposed method significantly outperformed the current typical methods of robust optical flow and SIFT flow. Our qualitative results in some related tasks such as image deformation and joint learning are encouraging.
Key words:  low-dimensional representation of images  L2 norm  robust optical flow  SIFT flow

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26481995位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号