引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2778次   下载 1905 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于双层动态筛选训练样本的光谱重建算法
刘士伟1,2, 刘真3, 田全慧3, 张建青3
1.上海理工大学,上海 200093;2.河南牧业经济学院,郑州 450006;3.上海理工大学,上海 200093
摘要:
目的 研究光谱重建过程中训练样本筛选方法对光谱重建精度的影响。方法 利用违逆的方法对测试样本Munsell样本和ColorChecker SG样本进行光谱重构,训练样本分别选择未经筛选的Munsell样本集、经过动态聚类筛选的和经过文中提出的双重动态筛选的Munsell样本集,然后比较3种样本筛选方法得到的光谱重构精度。结果 实验结果表明,经过双层动态筛选的训练样本重构精度无论是均方根误差(RMSE)、拟合优度(GFC)还是不同光源下(A, D50和F2)的色差,明显高于动态聚类分析的样本和未经筛选的样本。结论 提出了一种新的样本筛选方法,该筛选方法效果良好,具有一定的先进性。
关键词:  双层动态样本筛选  光谱重建  样本筛选  重建精度
DOI:
分类号:TS802.3;TS801.3
基金项目:上海理工大学科技发展项目(16KJFZ017)
Spectral Reconstruction Algorithm Based on Dual Dynamic Training Samples Selection Method
LIU Shi-wei1,2, LIU Zhen3, TIAN Quan-hui3, ZHANG Jian-qing3
1.University of Shanghai for Science and Technology, Shanghai 200093, China;2.Henan University of Animal Husbandry and Economy, Zhengzhou 450006, China;3.University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:
The work aims to study the influence of the training sample selection method in the process of spectral reconstruction on the spectral reconstruction accuracy. Munsell and ColorChecker SG (test samples) were reconstructed by using the method of pseudo inverse. Training samples were selected from unscreened Munsell sets and the Munsell sets selected through dynamic clustering and dual dynamic selection proposed in the paper. Then the spectral reconstruction accuracy was obtained by comparing three sample selection methods. The experimental results showed that the reconstruction accuracy of training samples subject to double dynamic selection was apparently higher than that of the samples analyzed by dynamic clustering and the unscreened samples, whether it was root-mean-square error (RMSE), goodness of fit (GFC) or color chromatic error under different light sources (A, D50, and F2). A new sample selection method is proposed. The selection method brings good effects and it is advanced to some extent.
Key words:  dual dynamic training samples selection  spectral reconstruction  sample selection  reconstruction accuracy

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26481745位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号