引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2739次   下载 1757 本文二维码信息
码上扫一扫!
分享到: 微信 更多
双曲正切型非线性包装系统跌落冲击响应分析
李皓婧, 张敏
新乡广播电视大学,新乡 453000
摘要:
目的 分析得到双曲正切型无阻尼非线性包装系统跌落冲击的近似解析解,解决典型工况下双曲正切型非线性包装系统跌落冲击响应求解问题。方法 采用PEM分析系统的跌落冲击响应,得到冲击响应的一阶近似解;通过包装动力学的能量法,得到无阻尼系统的精确最大位移值;对近似解进行修正。结果 在足够的精度范围内,修正后的最大位移响应值、最大加速度响应值以及系统响应周期非常接近于龙格-库塔数值解。结论 为双曲正切型非线性包装系统跌落冲击响应分析提供了一种新的近似分析方法。
关键词:  双曲正切型非线性  跌落冲击  近似解析解  同伦分析法  能量法
DOI:
分类号:TB122;TB485.1
基金项目:
Dropping Shock Response of Hyperbolic Tangent Nonlinear Packaging System
LI Hao-jing, ZHANG Min
Xinxiang Radio and Television University, Xinxiang 453000, China
Abstract:
The work aims to analyze and obtain the approximate analytic solution for dropping shock of hyperbolic tangent undamped nonlinear packaging system, and figure out the solution for the dropping shock response of hyperbolic tangent nonlinear packaging system under typical working conditions. PEM was used to analyze the dropping shock response of the system so as to obtain the first-order approximate solution for shock response. The accurate maximum displacement of undamped system was obtained with energy method of packaging dynamics and the approximate solution was corrected. Within an adequate accuracy range, the maximum displacement response, the maximum acceleration response and the system’s response cycle after correction were very close to that obtained by Runge-Kutta method. A new method is provided for approximate analysis of dropping shock response of hyperbolic tangent nonlinear packaging system.
Key words:  hyperbolic tangent nonlinear  dropping shock  approximate analytic solution  homotopy analysis method  energy method

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26481372位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号