引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2218次   下载 2078 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种基于人眼视觉特性的解压缩图像质量提高方法
姚军财, 申静
陕西理工学院,汉中 723000
摘要:
目的 为了提高解压缩重建图像的视觉效果和质量。方法 结合人眼视觉特性和图像变换域频谱系数特征, 构建了一个提升解压缩图像质量的补偿矩阵, 用以在解压缩过程中对反量化系数起到补偿作用, 并采用JPEG压缩算法, 对3幅彩色图像进行仿真实验验证。结果 在6种压缩比下, 相对于JPEG技术, 在解压缩重建图像过程中加入补偿矩阵后, 反映提升图像质量的参数SSIM和PSNR值分别平均增加了2.5275%和11.8977%。结论 该补偿矩阵有效提升了解压缩图像的质量, 较好地弥补了压缩过程中因量化而导致图像质量下降的不足。
关键词:  图像压缩  人眼视觉特性  补偿矩阵  结构相似度
DOI:
分类号:TS865
基金项目:国家自然科学基金 (61301237);陕西省科技新星计划 (2015KJXX-42);陕西省教育厅专项科研基金 (2015JK1139)
A Novel Method to Improve Quality of Decompressed Image Based on Characteristics of Human Visual System
YAO Jun-cai, SHEN Jing
Shaanxi University of Technology, Hanzhong 723000, China
Abstract:
This study aimed to improve the visual effect and the quality of the reconstructed images. Combining the characteristics of human visual system and spectrum coefficients in the transformation domain, a compensation matrix was constructed to improve the quality of decompressed image, which was to compensate the inverse quantization coefficients during the decompression. And the simulation experiments were carried out for three color images based on JPEG compression algorithm. The experimental results showed that, under the six compression ratios, compared with JPEG technology, SSIM and PSNR average values that reflected improved image quality were increased respectively by 2.5275% and 11.8977% by adding the compensation matrix in the reconstruction process of the decompressed image. The experiment showed the compensation matrix can enhance effectively the quality of the decompressed image, and compensates the quality degradation due to quantization during compression.
Key words:  image compression  characteristics of human visual system  compensation matrix  structural similarity

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第26481360位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023-68795652 Email: designartj@126.com

    

渝公网安备 50010702501716号