引用本文:李国志,李元吉,孙德强,黄凯楠,王常林,姜嘉伟,李文凤.基于缓冲包装系统的气体采样设备改进设计与验证[J].包装工程,2025,(3):245-252.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 152次   下载 40 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于缓冲包装系统的气体采样设备改进设计与验证
李国志1,2,3,李元吉1,2,3,孙德强1,2,3,黄凯楠1,2,3,王常林1,2,3,姜嘉伟1,2,3,李文凤4
1.陕西科技大学 轻工科学与工程学院,西安 710021;2.陕西科技大学 轻化工程国家级实验教学示范中心,西安 710021;3.陕西科技大学 3S包装新科技研究所,西安 710021;4.陕西科技大学 设计与艺术学院,西安 710021
摘要:
目的 改进气体采样设备以解决脆值过小的问题,对该设备进行包装设计并通过仿真和试验验证包装方案的可靠性。方法 通过瞬态结构仿真分析得到易损件脆值,改进了易损件固定的结构以提升设备整体脆值,设计设备的缓冲包装并使用LS-DYNA 进行包装件的跌落仿真,通过实际跌落试验验证有限元分析的可靠性及包装方案的可行性。结果 设备改进前整体脆值为18.5g,添加缓冲结构后脆值为32.7g,依据设备改进后设计的缓冲包装方案,在高度为500 mm的面、楞和角跌落实验中,易损件所受的最大响应加速度为面跌落的17.09g,最大应力为5.5 MPa,小于脆值18.5g和耐压强度6.9 MPa,仿真测试结果与试验的平均误差<10%。结论 本文通过对易损件固定结构的改进,提高了设备整体的脆值,降低了包装设计的难度,对精密仪器的包装系统设计具有一定借鉴价值。
关键词:  气体采样设备  设备改进  有限元仿真  跌落试验
DOI:10.19554/j.cnki.1001-3563.2025.03.029
分类号:
基金项目:国家自然科学基金(51575327)
Improved Design and Verification of Gas Sampling Equipment Based on Buffer Packaging System
LI Guozhi1,2,3, LI Yuanji1,2,3, SUN Deqiang1,2,3, HUANG Kainan1,2,3, WANG Changlin1,2,3, JIANG Jiawei1,2,3, LI Wenfeng4
(1.College of Bioresources Chemical and Materials Engineering,, Xi'an 710021, China; 2. National Demonstration Center for Experimental Light Chemistry Engineering Education,, Xi'an 710021, China;3. 3S Research Institute of Novel Packaging Science and Technology,, Xi'an 710021, China; 4. College of Art and Design, Shaanxi University of Science and Technology, Xi'an 710021, China)
Abstract:
The work aims to improve gas sampling equipment to address the issue of low fragility by designing the equipment packaging and validating the reliability of the packaging solution through simulation and testing. The fragility of the vulnerable components was determined through transient structural simulation analysis. The structure securing the fragile components was improved to enhance the overall fragility of the device. A buffer packaging was designed, and LS-DYNA was used to conduct drop simulation of the packaging. The reliability of the finite element analysis and the feasibility of the packaging solution were validated through actual drop tests. The overall fragility of the equipment before improvement was 18.5g. After adding the buffer structure, the fragility increased to 32.7g. Based on the buffer packaging solution designed after the equipment improvement, during drop tests from a height of 500 mm onto flat surfaces, edges, and corners, the maximum response acceleration experienced by vulnerable components was 17.4g for flat drops, with a maximum stress of 5.5 MPa, which was less than the fragility of 18.5g and the compressive strength of 6.9 MPa. The average error between the simulation and experimental results was less than 10%. The improvement made to the structure securing the fragile components enhances the overall fragility of the equipment, thereby reducing the difficulty of packaging design. This approach offers valuable insights for the packaging system design of precision instruments.
Key words:  gas sampling equipment  equipment improvement  finite element simulation  drop test

关于我们 | 联系我们 | 投诉建议 | 隐私保护

您是第24463563位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023—68792836传真:023—68792396 Email: designartj@126.com

    

  
 

渝公网安备 50010702501717号