引用本文:杨明旭,张俊宁,张志强,刘佳.基于改进YOLOv8的药片泡罩包装缺陷检测算法[J].包装工程,2025,(1):145-154.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 303次   下载 108 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于改进YOLOv8的药片泡罩包装缺陷检测算法
杨明旭1,张俊宁1,张志强1,刘佳2
1.北京信息科技大学,北京 100192;2.忻州师范学院,山西 忻州 034000
摘要:
目的 针对目前药片泡罩包装缺陷检测算法中缺陷类型单一、检测精度低、实时性能差等问题,提出了一种基于改进YOLOv8的药片泡罩包装缺陷检测算法UACSS-YOLO(UNetV2-ADown-ContextAggregation- Slim-Neck-SAttention-YOLO)。方法 该算法首先设计了主干网络UNetV2捕捉多尺度特征,采用轻量化下采样卷积层ADown降低训练成本,接着引入注意力机制ContextAggregation聚合上下文信息,提升复杂背景下的检测能力,最后将原颈部网络和检测头分别替换为Slim-Neck和SAttention,以减少参数量并提高检测速度。结果 UACSS-YOLO较YOLOv8在精确度P上提升了6.6%,在召回率R上提升了5.2%,在PmA@0.5上提升了4.8%,同时浮点运算数只有11.9 G。结论 相比其他算法,UACSS-YOLO满足低算力兼顾高精度的部署需求,为药片制造过程中的实时缺陷检测提供了一种高效的技术解决方案。
关键词:  缺陷检测  泡罩包装  药片  YOLOv8  轻量化
DOI:10.19554/j.cnki.1001-3563.2025.01.017
分类号:
基金项目:国家自然科学基金青年基金(51805039)
Defect Detection Algorithm of Pharmaceutical Blister Package Based on Improved YOLOv8
YANG Mingxu1, ZHANG Junning1, ZHANG Zhiqiang1, LIU Jia2
(1. Beijing Information Science and Technology University, Beijing 100192, China;2. Xinzhou Teachers University, Shanxi Xinzhou 034000, China)
Abstract:
In order to solve the problems of single defect types, low detection accuracy, and poor real-time performance in current pharmaceutical blister package defect detection algorithms, the work aims to propose a pharmaceutical blister package defect detection algorithm named UACSS-YOLO (UNetV2- ADown-ContextAggregation-Slim-Neck-SAttention-YOLO) based on the improved YOLOv8. Firstly, UNetV2 was designed as the backbone network to capture multi-scale features, while the lightweight downsampling convolution layer ADown was adopted to reduce training costs. Then, the attention mechanism ContextAggregation was introduced to aggregate context information, which improved the detection ability under complex background. Finally, the original neck network and detection head were replaced with Slim-Neck and SAttention, which reduced the number of parameters and improved the detection speed. Compared to YOLOv8, UACSS-YOLO improves precision P by 6.6%, recall R by 5.2%, and PmA@0.5 by 4.8%, and the floating point operation per second was only 11.9 G. Compared with other algorithms, UACSS-YOLO meets the deployment needs of low computational power and high precision. This provides an efficient technical solution for real-time defect detection in the tablet manufacturing process.
Key words:  defect detection  blister package  pharmaceutical  YOLOv8  lightweight

关于我们 | 联系我们 | 投诉建议 | 隐私保护

您是第24461184位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023—68792836传真:023—68792396 Email: designartj@126.com

    

  
 

渝公网安备 50010702501717号