引用本文:黎达,史瑞芝,李胜辉,王凯.结合C/S架构和BRF算法的移动增强现实研究[J].包装工程,2016,37(15):24-29.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3005次   下载 2031 本文二维码信息
码上扫一扫!
分享到: 微信 更多
结合C/S架构和BRF算法的移动增强现实研究
黎达1, 史瑞芝1, 李胜辉1, 王凯2
1.信息工程大学,郑州 450001;2.61243部队,乌鲁木齐 830001
摘要:
目的 提出一种结合C/S(Client/Server)架构和BRF(Boosted random ferns)算法的移动增强现实应用方案,以保证图像识别算法对于产品外包装的识别性能。方法 BRF是一种高效、鲁棒的特征匹配算法,但由于手机内存及处理器等硬件条件的制约,不能直接适用于手机终端。将C/S模式与BRF算法相结合应用于图像特征匹配,并设计实验测试比较文中方案(CS-BRF)与ORB算法的识别速度和匹配精度。结果 实验结果表明,相比ORB算法,CS-BRF在识别速度相近的前提下,具有更为优异的识别精度。 结论 CS-BRF能够实时准确识别印刷品图像,良好适用于产品包装移动增强现实系统。
关键词:  BRF  C/S  特征匹配  图像识别  移动增强现实
DOI:
分类号:TS805.4
基金项目:
Mobile Augmented Reality Research by Combining C/S Architecture and BRF Algorithm
LI Da1, SHI Rui-zhi1, LI Sheng-hui1, WANG Kai2
1.The PLA Information Engineering University, Zhengzhou 450001, China;2.61243 Forces, Urumqi 830001, China
Abstract:
This paper aims to put forward a mobile augmented reality scheme by combining the C/S (client/server) architecture and BRF (boosted random ferns) algorithm that can enable the recognition performance for product packaging. BRF was an effective and robust feature matching algorithm, but not suitable for mobile phones directly because of the devices’ limited capabilities. This paper combined the C/S mode and BRF algorithm for matching features, and performed experiments and compared the recognition speed and accuracy of CS-BRF and ORB. Experimental results showed that CS-BRF had close efficiency and better accuracy than ORB. In conclusion, CS-BRF can recognize printed images rapidly and precisely, and thus is well applicable to mobile augmented reality system for product packaging.
Key words:  BRF  C/S  feature matching  image recognition  mobile augmented realit

关于我们 | 联系我们 | 投诉建议 | 隐私保护

您是第24463827位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023—68792836传真:023—68792396 Email: designartj@126.com

    

  
 

渝公网安备 50010702501717号