引用本文:刘真,于海琦,田全慧.GA-BP神经网络结合子空间划分的打印机光谱预测模型[J].包装工程,2015,36(21):133-136,141.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2420次   下载 2102 本文二维码信息
码上扫一扫!
分享到: 微信 更多
GA-BP神经网络结合子空间划分的打印机光谱预测模型
刘真1, 于海琦1, 田全慧2
1.上海理工大学,上海 200093;2.上海出版印刷高等专科学校,上海 200093
摘要:
目的 为了实现打印机的光谱预测, 提出一种GA-BP神经网络结合子空间划分的预测模型。方法将打印机颜色空间划分成若干子空间, 在子空间中运用GA-BP神经网络, 对任意输入打印机的驱动值,根据其所在子空间实现光谱值的预测; 采用主成分分析对光谱反射率进行降维, 在简化了神经网络结构的同时, 保持了对检测样本较高的识别精度。结果 模型预测精度较未进行子空间划分时有了明显提高。结论 提出的模型能够满足高精度打印机光谱预测的要求。
关键词:  BP神经网络  遗传算法  光谱预测  子空间划分
DOI:
分类号:TS801.3
基金项目:
A Spectral Prediction Model of Printer Based on GA-BP Neural Network and Subspace Partition
LIU Zhen1, YU Hai-qi1, TIAN Quan-hui2
1.University of Shanghai for Science and Technology, Shanghai 200093, China;2.Shanghai Publishing and Printing College, Shanghai 200093, China
Abstract:
A spectral prediction model of printer based on GA-BP neural network and subspace partition was proposed in this paper. Color space of printer was divided into subspaces and GA-BP neural network models were applied in subspaces.Spectral reflectance of any printer motivation values can be predicted by GA-BP neural network according to their own subspace. The principal component analysis was used for dimensionality reduction of spectral reflectance, which simplified the neural network structure and maintained the high identification accuracy for the test samples at the same time. Experimental results showed that prediction accuracy of the model improved obviously than the model without subspace partition, which can satisfy the requirement of high-precision spectral prediction of printer.
Key words:  BP neural network  genetic algorithm  spectral prediction  subspace partition

关于我们 | 联系我们 | 投诉建议 | 隐私保护

您是第24463861位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023—68792836传真:023—68792396 Email: designartj@126.com

    

  
 

渝公网安备 50010702501717号