引用本文:王瞿建,田全慧.一种基于子空间划分的LCD显示器光谱特征化模型[J].包装工程,2015,36(17):95-99.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2671次   下载 2239 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种基于子空间划分的LCD显示器光谱特征化模型
王瞿建1, 田全慧2
1.上海理工大学,上海 200093;2.上海出版印刷高等专科学校,上海 200093
摘要:
目的 为实现 LCD显示器的光谱特征化, 提出一种基于子空间划分的BP神经网络结合PCA的光谱特征化模型。方法 对显示器色空间进行子空间划分, 在各子空间中进行模型的训练与检测。结果子空间划分后模型的色度和光谱精度, 较未进行子空间划分的模型有明显提高, PCA在不影响模型精度的同时, 降低了光谱维度, 提高了算法的运行效率。结论 该模型是一种高精度显示器特征化模型。
关键词:  BP神经网络  子空间划分  光谱特征化  LCD显示器  主成分分析
DOI:
分类号:TS801.3
基金项目:上海市研究生创新基金 (JWCXSL1402)
A Spectral Characterization Model of Liquid Crystal Display(LCD) Based on RBF Neural Network
WANG Qu-jian1, TIAN Quan-hui2
1.University of Shanghai for Science and Technology, Shanghai 200093, China;2.Shanghai Publishing and Printing College, Shanghai 200093, China
Abstract:
The aim of this study was to propose a spectral characterization model using BP neural network based on subspace partition and PCA so as to achieve spectral characterization of LCD. Color space of monitor was divided into subspaces. Training and testing of the model was processed in subspaces. Experimental results showed that model parameter optimization in the subspace was beneficial to the improvement of colorimetric and spectral accuracy of the model after subspace division. PCA can improve the operating efficiency of algorithm and reduce spectral dimension under the circumstances of maintaining accuracy. The experiment implies that this is a high-precise characteristic model for display.
Key words:  BP neural network  subspace partition  spectral characterization  LCD  principal component analysis

关于我们 | 联系我们 | 投诉建议 | 隐私保护

您是第24463726位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023—68792836传真:023—68792396 Email: designartj@126.com

    

  
 

渝公网安备 50010702501717号