引用本文: | 滑广军,赵德坚,肖颖喆,谢勇.缓冲包装设计方法数学内涵探析[J].包装工程,2013,34(23):64-67. |
| |
|
|
|
本文已被:浏览 2550次 下载 2229次 |
 码上扫一扫! |
|
缓冲包装设计方法数学内涵探析 |
滑广军, 赵德坚, 肖颖喆, 谢勇
|
湖南工业大学, 株洲412008
|
|
摘要: |
为便于设计者理解和掌握缓冲系数-最大应力曲线的缓冲设计方法,利用数学方法进行了研究。将材料缓冲系数-最大应力曲线等效为通用函数方程的形式,并与缓冲面积及厚度计算公式一起作为不定式方程组进行分析,从而将基于缓冲系数-最大应力的缓冲设计方法转化为求解不定式方程组的问题。对几种经典的缓冲包装衬垫面积和厚度计算方法进行了分类和诠释。这些典型的缓冲结构面积及厚度设计方法本质上是为求解不定式方程组增加了不同的约束条件,将求解不定式方程组转变为求解适定方程组的问题,有助于设计人员灵活地设计缓冲包装结构。 |
关键词: 缓冲系数 缓冲设计 不定式方程组 |
DOI: |
分类号:TB485. 1 |
基金项目:湖南省教育厅教改基金资助项目(10C258);湖南工业大学教改项目(2013A10) |
|
Discussion and Analysis on Mathematical Connotation of Cushioning Packaging Design Method |
HUA Guang-jun, ZHAO De-jian, XIAO Ying-zhe, XIE Yong
|
Hunan University of Technology, Zhuzhou 412008, China
|
Abstract: |
The purpose was to help designers understand the cushioning design methods based on cushioning coefficient-maximum stress curve. The cushioning coefficient-maximum stress curve was equivalent to an infinitive equation. The infinitive equation was composed to infinitive equation group together with the cushioning pad area and thickness formula. By this means, the cushioning pad design methods based on cushioning coefficient-maximum stress curve was converted to the problem of solving infinitive equation group. By this method, the classic cushioning pad area and thickness calculation methods were analyzed and classified. It was concluded that the essence of the classic cushioning design methods is adding a restriction to the infinitive equation group and converting the original infinitive equation group to posed equations. |
Key words: cushioning coefficient cushioning packaging design infinitive equation group |
|