引用本文:李晓刚,刘晋浩,陈俊成,耿思宇,张毅.基于神经网络的图像混合滤波及融合算法研究[J].包装工程,2013,34(9):89-94.
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2957次   下载 1820 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于神经网络的图像混合滤波及融合算法研究
李晓刚, 刘晋浩, 陈俊成, 耿思宇, 张毅
北京林业大学, 北京 100083
摘要:
当图像中同时存在高斯噪声和椒盐噪声时,单一的均值滤波或中值滤波很难达到最佳滤波效果。 分析了噪声特点和各种滤波方法的优势,提出了一种基于神经网络的图像混合滤波及融合算法:首先建立概率神经网络,检测椒盐噪声和高斯噪声点,并分别利用中值滤波和均值滤波去除噪声点,然后建立径向基函数神经网络,利用训练好的径向基函数神经网络融合 2 种不同滤波的图像,输出理想的融合图像。 Matlab 仿真实验结果表明,该算法有效去除混合噪声的同时,能很好地保护图像的边缘与细节,是一种有效的方法。
关键词:  概率神经网络  径向基函数神经网络  中值滤波  均值滤波  混合滤波  融合算法
DOI:
分类号:TB486; TS801. 3
基金项目:
Research on Image Hybrid Filter and Fusion Algorithm Based on Neural Network
LI Xiao-gang, LIU Jin-hao, CHEN Jun-cheng, GENG Si-yu, ZHANG Yi
Beijing Forestry University, Beijing 100083, China
Abstract:
When Gaussian noise and salt and pepper noise both exist in image, single mean filter or median filter turn out to be dissatisfactory. The characteristics of noises and dominance of filter algorithms were analyzed. A hybrid filter and fusion algorithm based on neural network was proposed. Firstly, probabilistic neural network was built to detect the salt and pepper noise and Gaussian noise and remove them respectively by median filter and mean filter algorithm. Then trained radial basis function neural network was built to fuse the two kinds of different filtering image. The ideal fusion image was output finally. The results by Matlab simulation experiments showed that the proposed algorithm can effectively remove mixed noise and preserve image edges and details very well. It is an effective method of image denoising.
Key words:  probabilistic neural network ( PNN)  radial basis function neural network ( RBFNN)  median filter  mean filter  hybrid filter algorithm  fusion algorithm

关于我们 | 联系我们 | 投诉建议 | 隐私保护

您是第24463904位访问者    渝ICP备15012534号-2

版权所有:《包装工程》编辑部 2014 All Rights Reserved

邮编:400039 电话:023—68792836传真:023—68792396 Email: designartj@126.com

    

  
 

渝公网安备 50010702501717号